深圳市华科星电气有限公司

华科星--智造筑梦者伺服电机让自动化生产更简单高效

13902954146

聚焦华科星,携手创共赢

PLC控制器实现步进电机正反转和调速控制

返回列表 来源: 发布日期: 2019.09.23

PLC控制器实现步进电机正反转和调速控制

实验目的


1、掌握步进电机的工作原理
2、掌握带驱动电源的步进电机的控制方法
3、掌握DECO指令实现步进电机正反转和调速控制的程序


二、实训仪器和设备
1、PLC控制器 一台
2、两相四拍带驱动电源的步进电机一套
3、正反切换开关、起停开关、增减速开关各一个


三、步进电机工作原理
步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图。从图中可以看出,它分成转子和定子两部分。定子是由硅钢片叠成,定子上有六个磁极(大极),每两个相对的磁极(N、S极)组成一对。共有3对。每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相。可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推。
反应式步进电动机的动力来自于电磁力。在电磁力的作用下,转子被强行推动到最大磁导率(或者最小磁阻)的位置,如图3-1(a)所示,定子小齿与转子小齿对齐的位置,并处于平衡状态。对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1(b)所示,即定子小齿与转子小齿不对齐的位置。

640.webp

把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿。错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态。
本实验的电机采用两相混合式步进电机,其内部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转。因为中间连接的,是采用在转轴的位置用一根滑动的接触片。这样如果电磁铁转过了头,原先连接电磁铁的两根线刚好就相反了,所以电磁铁的N极S极就和以前相反了。但是电机上下的磁铁是不变的,所以又可以继续吸引中间的电磁铁。当电磁铁继续转,由于惯性又转过了头,所以电极又相反了。重复上述过程就步进电机转了。
根据这个原理,如图3-2所示,两相步进电机的转动步骤,以正转为例:
 
PLC控制器实现步进电机正反转和调速控制
由图可见,现相异步电机正转过程分为四个步骤,即A相正方向电流、B相正方向电流、A向反方向电流和B相反方向电流。反转工作的顺序与之相反。A、B两相线圈不是固定的电流方向,这与其它步进电机的控制逻辑有所不同。因此,控制步进电机转动时,必须考虑用换相的思路设计实验线路。可以根据模拟驱动电路的功能和plc必须的逻辑关系进行程序设计。


四、采用步进电机驱动器的控制方式
利用步进电机驱动器可以通过PLC的高速输出信号控制步进电机的运动方向、运行速度、运行步数等状态。其中:步进电机的方向控制,只需要通过控制U/D端的On和Off就能决定电机的正转或反转;将光耦隔离的脉冲信号输入到CP端就能决定步进电机的速度和步数;控制FREE信号就能使电机处于自由状态。
因此PLC控制器 的控制程序相当简单,只需通过PLC的输出就能控制步进电机的方向、转速和步数。不必通过PLC控制电机换相的逻辑关系,也不必另外添加驱动电路。实训面板见图3-4,梯形图见图3-5。本程序是利用D0的变化,改变T0的定时间隔,从而改变步进电机的转速。通过两个触点比较指令使得D0只能在10~50之间变化,从而控制步进间隔是1S~5S之间,I/O分配表见表3-1。
表3-1  I/O分配表


输入点
输出点
X0
正转/反转方向
Y0
电机控制脉冲
X1
电机转动
Y1
正转/反转运行
X2
电机停止


X4
频率增加


X5
频率减少




 
.
PLC控制器实现步进电机正反转和调速控制
图3-5  梯形图
 
五、采用PLC控制器直接控制步进电机方式
对于两相步进电机控制,根据其工作原理,必须考虑其换向的控制方式,因此将其步骤用代号分解,则为:①实现电流方向A+→A-、②实现电流方向B+→B-、③实现电流方向A-→A+、④实现电流方向B-→B+。如果反转则按照④、③、②、①的顺序控制。
PLC的I/O分配表按照表3-2,分配图按照图3-6,梯形图见图3-7。
表3-2  PLC的I/O分配表


输入点
输出点
X0
正转运行
COM1
DC+12V
X1
反转运行
Y0
A+
X2
自动/手动
Y1
B+
X3
单步运行
Y2
A-
X4
频率增加
Y3
B-
X5
频率减少
COM2
DC+12V  GND


Y4
A-


Y5
B-


Y6
A+


Y7
B+



PLC控制器实现步进电机正反转和调速控制
 
 步进电机正反转和调速控制的梯形图如图3-7所示,程序中采用积算定时器T246为脉冲发生器,因系统配置的PLC为继电器输出类型,其通断频率过高有可能损坏PLC控制器 ,故设定范围为K200ms~1000ms,则步进电机可获得1~10步/秒的变速范围,(X0为ON时,正转,X1为ON时;反转)。
X0为ON时,输出正脉冲列,步进电机正转。当X0为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值(首次为0),指定M10输出,Y0、Y4为ON,步进电机A相通电,且实现电流方向A+→A-;D1加1,然后,T246马上自行复位,重新计时,时间到,T246又导通,再执行DECO指令,根据D1数值(此次为1),指定M11输出,Y1、Y5为ON,步进电机B相通电,且实现电流方向B+→B-;D1加1,T246马上又自行复位,重新计数,时间到,T246又导通,再执行DECO指令,根据D1数值(此次为2),指定M12输出,Y2、Y6为ON,步进电机A相通电,且实现电流方向A-→A+;D1加1,T246马上又自行复位,重新计时,时间到,T246又导通,再执行DECO命令,根据D1数值(此次为3),指定M13输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生。
X1为ON时,输出反脉冲列,步进电机正转。当X1为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值(首次为0),指定M10输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;依此类推,完成实现A相反方向电流、B相正方向电流、A相正方向电流三个脉冲列输出;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生。
当X2为ON时,程序由自动转为手动模式,当X0(X1)为ON时,每点动一次X3,对D1数值(首次为0)加1,分别指定M10、M11、M12及M13输出,从而完成一轮正(反)脉冲系列的产生。
第73步中,当X4为ON,M8012为ON,M4为ON,且D0当前值< span="">,则D0即加1。第88步中,当X5为ON,M8012为ON,M4为ON,且D0>K200,由D0即减1。


六、程序调试及执行
调速时按X4或X5按钮,观察D0的变化,当变化值为所需速度时释放。
如动作情况与控制要求一致表明程序正确,保存程序。如果发现程序运行与控制要求不符,应仔细分析,找出原因,重新修改,直到程序与控制要求相符为止。


七、实训思考练习题
如果调速需经常进行,可将D0的内容显示出来,试设想方案,修改程序,并实验。
 
PLC控制器实现步进电机正反转和调速控制
PLC控制器实现步进电机正反转和调速控制
PLC控制器实现步进电机正反转和调速控制
 图3-7  步进电机正反转和调速控制
程序说明
1、步骤0,指定脉冲序列输出顺序移位值;
2、当X0为ON,输出正脉冲序列,电机正转;当X1为ON,输出负脉冲序列,电机反转;
3、当X2为ON,程序由自动转为手动模式,由X3状态单步触发电机运转;
4、当X4为ON,如D0小于1000,每100ms对D0加1,从而延长每脉冲输出的时间间隔,降低电机的转速;
5、当X5为ON,如D0大于200,每100ms对D0减1,从而缩短每脉冲输出的时间间隔,加快电机的转速;
6、T0为频率调整限制。

深圳市华科星电气有限公司是工业自动化行业一家有名的技术服务企业,专注进口伺服电机、精密减速机、步进电机、直线电机等一站式供应,提供免费技术支持和终身维护服务,欢迎来电咨询: 13902954146

resource/images/fe01032be2344f989b168ced8dafd3a1_2.jpg


【相关推荐】

咨询热线

13902954146
  • 咨询专线:13902954146
  • 公司邮箱:15117563@qq.com
  • 地址:深圳市龙华大浪大浪街道同胜社区下横朗新工业区10号6楼
  • 华科星手机站微信公众号
  • 添加微信在线客服浏览手机版
深圳市华科星电气有限公司  备案号:粤ICP备09118828号     网站地图    
https://p.qiao.baidu.com/cps/chat?siteId=13083771&userId=26464677&siteToken=a423487734eefec15843694eade9271d